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Abstract of First Year Effort

A central problem in developing effective smoke obscurants
for space applications is to maximize volumetric extinction or
absorption at the wavelength of the incident electromagnetic
radiation. Although this is a problem without a general
solution, it is possible to make recommendations based on very
general considerations. One can establish bounds not on
extinction at any wavelength, but rather extinction integrated
over all wavelengths.

A sum rule for extinction is a bound on integrated
volumetric extinction. The existence of such sum rules requires
suitable behavior of volumetric extinction at high and low
frequencies. If, in the limit of low frequency, extinction
decreases as the 1 + ¢ power of frequency, where o is any
positive number, then a sum rule exists. At low frequencies,

the extinction cross section of an ellipsoid composed of either

a simple free-electron metal or a simple insulator is proportional

-

to frequency squared, which ensures the existence of a sum rule

v

for extinction by such particles. Only a single type of sum
rule exists because of the rather stringent requirements on
both the low- and high-frequency behavior of particle
extinction cross sections.

We have established that the sum rule for extinction is
not changed when magnetic dipole as well as electric dipole

radiation is considered. Moreover, the limitation of electron

v AREEETES NG TV ELS.

mean free paths in metallic particles does not invalidate sum
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rules. When metallic particles are sufficiently small, the
effect of their boundaries is to decrease peak extinction

while simultaneously broadening it in such a way that integrated
extinction remains constant.

Although integrated extinction is independent of particle
size, sum rules imply that the smallest particles will have the
greatest volumetric extinction. When a particle is illuminated
by an electromagnetic wave, various electromagnetic modes are
excited. The larger the particle, the greater the number of

modes. Thus, a fixed amount of total extinction must be shared
by modes, the number of which increases with increasing particle
size. This implies that the smallest particles have the greatest
extinction.

Two classes of materials, free-electron metals and polar
insulators, with vastly different properties, nevertheless have
in common that integrated extinction by particles of these
materials is approximately the same.

Volumetric extinction of 10* cm"l should be looked upon

as a kind of lower bound: it is the value that can be obtained

without much-effort. What is the upper bound? We must look to

small (compared with the wavelength) metallic particles for the

greatest possible volumetric extinction. Fewer modes are

in a needle or a disk.

excited in a sphere than
by a small aluminum soher.:

this is a practical urier bound.

Mmmmwmmm'ﬁmw}cmw}&' NN

is about 107 cm

Moreover,

-l. We claim that

Peak extinction

this bound cannot




be obtained over a wide range of frequencies. A practical

upper bound over at least one decade from the ultraviolet to

the near infrared is 10° cm-l, and this would have to be

obtained with a mixture of particles having different shapes.




Abstract of Second Year Effort

One of the essential lessons to be learned from sum rules
is that extinction cannot be arbitrarily specified. 1Integrated
volumetric extinction is independent of particle size and
depends on only the low frequency behavior of the material of
which the particle is composed. This in turn implies that
extinction at one frequency is related to extinction at other
frequencies. From this idea another related one evolved: the
scattering coefficients are not independent. A proof of this
was constructed for scattering by a sphere. The Mie coefficients
are completely specified by the first four of them. A proof of
this and its physical interpretation is given in Appendix A,
a manuscript on recurrence relations for Mie scattering coefficients,

which will appear in a future issue of Journal of the Optical

Society of America.




Appendix A

Recurrence Relations for the Mie Scattering Coefficients

to appear in

Journal of the Optical Society of America

February 1987




Recurrence Relations for the Mie Scattering Coefficients

Craig F. Bohren

Department of Meteorology
Pennsylvania State University

University Park, Pennsylvania 16802

Abstract

The Mie scattering coefficients satisfy recurrence
relations: an_qr bpoqv a,, and b , determine an+ and b ..
It is therefore possible, in principle, to generate the entire
set from the first four, which has a simple interpretation.
Each term in a multipole expansion of an electrostatic field can
be obtained by differentiating the preceding term. The Mie
coefficients are terms in a multipole expansion of a particular
electromagnetic field, that scattered by an arbitrary sphere.
By analogy, it is not surprising that all these coefficients can
be generated from the electric and magnetic dipole and
guadrupole terms. Moreover, the recurrence relations for the
Mie coefficients contain finite differences, in analogy with the

infinitesimal differences (derivatives) in the multipole

expansion of an electrostatic field.
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The solution to the problem of scattering by an arbitrary
sphere (Mie theory) vields an infinite set of coefficientsl-s,
which depend on various Bessel functions and their derivatives.
The usual approach to computing these coefficients is to compute
the Bessel functions by recurrences—s. This might be called the
natural or direct way of computation. It seems so natural, so
obvious, that, to my knowledge, no one has ever done otherwise,
although there are hints in Ref. 4 (p. 51). What is usually at
issue is not if one should compute Bessel functions but rather
how to do it in the fastest and most accurate way. I have posed
this question differently. The Bessel functions in the
expressions for the scattering coefficients satisfy recurrence
relations. Furthermore, Verner9 showed that the numerators and
denominators of these coefficients satisfy recurrence relations.
Thus, is it not likely that the coefficients themselves satisfy
recurrence relations? In the following paragraphs I show that
they do and give a physical interpretation of why. My notation
and conventions are those of Ref. 5.

The Mie scattering coefficients can be written as follows:

xD_(mx) ¥ (x) + mny_(x) = mxy__,(x)

a = ' (1)
xD_ (mx)€_(x) + mng (x) - mxg ) (x)

mxD_(mx)y_(xX) + ny_ (X) xy__q(x)
b = —n " ’n n sl — (2)

T mxD, (mx) € (x) + nE (x) = xE 4 (x)

where D, is the logarithmic derivative w;/w and ¥, £, are

n'
Riccati-Bessel functions. The size parameter x is 2va/} , where

a is the radius of the sphere and X is the wavelength of the
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incident light; m is the refractive index of the sphere relative

to that of the surrounding medium. The logarithmic derivative

satisfies the recurrence relation

. n 1
Dh-1 ° mx " B, ¥ n/mx (3)

and both of the Riccati-Bessel functions satisfy the recurrence

relation

?n-1 % T x %0 7 Znsl c (4)

From Egs. (1)-(4) it follows that any set of six coefficients

are given by

uy + A3uz + Bly + A,z

4
an-l = ’ (5)
uv + A3uw + Blv + A4w
uy + Bly + AZZ
uv + Blv + Azw 1
uy + Ay + A,z ﬁ
1 2 1
a, = (7) '
uv + Alv + A2w :
uy + B,y + B,z :
b = L 2, (8) :
_ uv + Blv + Bzw :
O - '
uy .Suo + A6y + A7z H
an+1 T ! (9) !
uv o+ - W + A6v + A7w ﬁ
U_. * . + -:\22
b = -, (10)
n+l uss e ok :‘\.2W
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4
_ mn _ . L _
Al —x—l AZ = -m, Bl = mxe BZ = -1/m,
1 - m? n? - m?x? - m2n?
1\3 - I}-g-—————-—-——-z_ , 1\ - ; " ’
m2x 4 mix
A = x(m? - 1) (n + 1)
> (n+1)(2n + 1) (1 - m?) + mix?
A = nm?x + (n + 1)2(2n + 1) (m? - 1)
6 mx{(n + 1) (2n + 1) (1 ~ m?) + m?x?}
A = (n + 1)2(1 - m?) - m2x?
7 m{in+ 1) 20 + 1) (1 - m?) + mix?)
B. = f2n + 1)m? - (n + 1)
3" mx *

Four quantities (e.q., u, v/y, w/y, z/y) determine any of

b

the five coefficients a,.q+ b a

n-1° n’ n’ an+l (or bn+l) . Thus,

it is possible to solve for any one of these coefficients (e.gq.,

an+1 or bn+1) in terms of the other four. To do so, we may

consider u to be fixed in Egs. (5)-(8) and write them in the

form
{ - - } {
a(A; + u) a A, (A +u) -a, v
bn‘(B1 + u) b B, -(B; + u) -B, w

=0
bn-l(Bl + u) bn_lA2 --(B1 + u) -A2 Y
\an-l(Bl + u) an-l(ABU + A4) -(B1 + u) ~(A3u + A4)J\zJ (11)
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The determinant of the coefficient matrix in Eq. (11) must
vanish if its solution is to be nontrivial. By setting this
determinant equal to zero, one obtains a cubic equation
satisfied by u. ©One of its factors is B; + u, which follows
from inspection of Egq. (11); the root u = -B1 is obviously not
the one desired. The correct value of u is one of the roots of

the quadratic equation

A =0, (12)

where

(a. - b )la._; - b__;)
A= n n n-1 n-1 . (13)
(bn - an—l) (an - bn-l)

To obtain these equations it was also necessary to use the

relations AZBZ = 1 and AIBZ = AZBl. Wwhich of the two roots of

Eq. (12) is the correct one must be determined by some auxiliary

condition (e.g., the magnitude of the scattering coefficients

cannot exceed unity). Given this root, one can substitute it in
Eq. (11) and determine any three of the set (v,w,y,2) as
multiplicative functions of the fourth. When these functions

and u are substituted into Eq. (9), a is obtained as a

n+l
function of %r&' bn-l' ap, bn, the index n, and the properties
of the sphere (x and m). Similarly, b is so obtained. This

n+1l
completes the proof that any set of four consecutive scattering

coefficients determine the following two.

This result has a simple interpretation. It has long been
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known that each term in the expansion of an electrostatic field
can be obtained by differentiation of the preceding term. This
idea was developed by Maxwelllo'll, who used the term "points"
of the nth order, whereas in modern work they would be referred
to as "2% poles" or "multipoles" (see, e.g., Ref. 12). The Mie
coefficients are terms in a multipole expansion of a particular
electromagnetic field, that scattered by an arbitrary sphere.

By analogy, it is not surprising that all of these coefficients
can be generated from the electric (al) and magnetic (bl) dipole
terms and the electric (az) and magnetic (bz) quadrupole terms.
Moreover, the recurrence relations for the Mie coefficients
contain finite differences (see Eg. 13), in analogy with the
infinitesimal differences (derivatives) in the multipole
expansion of an electrostatic field. A possible interpretation
of why the multipoles in Mie theory are connected by finite
differences is that this theory applies to particles with finite
(relative to the wavelength) dimensions. In contrast, the
wavelength is infinite (alternatively, the speed of light is
infinite) in electrostatics. A further difference between
electrostatics (and magnetostatics) and electrodynamics is that
in static theories the electric and magnetic terms are distinct:

electric terms are connected only to electric terms (and

similarly for magnetic terms). But when the propagation time
over characteristic distances is not negligible compared with
the period (e.g., when x = wa/c is not negligible, where c is
the speed of light, and a is the radius of a particle 1

illuminated by light of circular frequency w), then electric and




magnetic multipoles are inextricably connected.

Whether or not the recurrence relations can simplify
scattering calculations must be determined by extensive
calculations. It is not known if the recurrence relations are
stable, either upward or downward. And one must devise a simple
test for which root of Eg. (12) is the proper one. These are
matters for further investigation. Nevertheless, merely knowing
that the scattering coefficients can be generated by recurrence
gives new insights. It is for this reason that I have set them
down, not because they will necessarily reduce computation time.

I am indebted to Nels Shirer, Robert Wells, Warren
Wiscombe, and Akhlesh Lakhtakia for their valuable suggestions

i and comments. And I sincerely thank William Doyle and Milton

} Kerker not only for helping me with the technical aspects of

; the work reported here but also for encouraging me to carry it
out. This work was supported, in part, by a grant from the Air

Force Office of Scientific Research, Directorate of Electronic

and Material Science.
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